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1. Introduction to Raman spectroscopy
Light that is scattered from a molecule is primamlastically scattered, that is, the

incident and the scattered photons have the samyen A small probability exists,

however, that a photon is scattered inelasticadigulting in either a net gain or loss of
energy of the scattered photon. This inelastidtegag, discovered by Raman and
Krishna! allows fundamental molecular vibrational transifoto be measured at any

excitation wavelength.

Raman scattering is a coherent one-step proceafich one photon is exchanged for
another through interaction with a molecule. Schtgrally, the Raman process is
depicted as a molecule in an initial vibrationatstproceeding to a higher or lower
vibrational state through excitation to a “virtiste,” with simultaneous scattering of a
new photon from this state. The difference in gpdretween the incident and scattered
photon is equal to the energy difference betweenrtttial and final vibrational states of
the molecule. A loss in photon energy is termezk&-Raman scattering and a gain in
photon energy is termed anti-Stokes-Raman scagtérifihese processes are depicted in

Figure 1.

Not all vibrational transitions can be accessedRaman scattering. Raman-active
transitions are those associated with a changeolaripability of the molecule. In

classical terms, this can be viewed as a pertunbati the electron cloud of the molecule.

A Raman spectrum is a plot of scattered light isitgnversus energy shift (also called
Raman shift) reported in wavenumbers ®mAn example spectrum of aqueous glucose
is shown in Figure 2. To convert from a wavenumddgft to wavelength, the incident

wavelength must be known. For example, a 603 Baman shift occurs at 873.5 nm if



the excitation wavelength is 830 nm (1¥1(@/830x10" cm*-600 cm*)=873.5 nm) or at

823.8 nm if the excitation wavelength is 785 nm.
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Figure 1. Energy diagram for Rayleighfigure 2. A Raman spectrum consists of
Stokes Raman, and anti-Stokes Ramsagattered intensity plotted vs. energy. This

scattering. figure uses glucose water solution
measured in a quartz cuvette as an
example.

In this chapter we focus on non-resonant spontan&auman scattering. A special case
of Raman scattering, surface-enhanced Raman spegphy (SERS), is discussed in

Chapter X.

2. Biological considerationsfor Raman spectroscopy

2.1 Usingnear infrared radiation
Raman shifts are independent of excitation wavélermgd thus Raman spectroscopy

offers the flexibility to select a suitable excitet wavelength for a specific application.
The choice of NIR excitation for probing biologicéissue is justified by three
advantageous features: low-energy optical radiatdeep penetration, and reduced

background fluorescence. Light in the NIR regismon-ionizing and therefore does not



pose the same exposure risk as X-ray radiation.ditidadally, NIR light penetrates

relatively deep into the tissue, on the order of mom in some spectral windows. These
depths are possible due to reduced elastic scajtewhich decreases at longer
wavelengths, and the lack of significant absorpbands in this region. Fluorescence is
also much lower in the NIR region as compared twtsh wavelengths, thus allowing the

less intense Raman bands to be resolved.

Figure 3 illustrates the absorption spectra of maj@mogenous tissue absorbers, namely,
water, skin melanin, hemoglobin, and fat. Alsowhas the scattering spectrum of 10%
intralipid, a lipid emulsion often used to simuldiesue scattering. The “diagnostic

window,” in which a group of minima exists, is ao#dd.

A final consideration for the selection of excitatiwvavelength in Raman spectroscopy is
the efficiency of the silicon-cased charge coumledice (CCD) detector. Due to silicon
absorption, CCD detectors are prohibitively ineéfic above 1000 nm. As a result, 785
nm or, more recently, 830 nm are often chosen aseititation wavelength to fully
exploit the “diagnostic window” while retaining aacceptable quantum efficiency

detector.
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Figure 3. Absorption spectra of water, skin melahemoglobin, and fat. Also shown is

the scattering spectrum of 10% intralipid, a lipichulsion often used to simulate tissue
scattering. Data are obtained from http:// omlceaty/spectra/index.html.

2.2 Background signal in biological Raman spectra
Although greatly reduced in intensity as comparetlV-visible excitation, NIR Raman

spectra of biological samples are often accompabied strong background, generally
attributed to fluorescence. Macromolecules suclprageins and lipids are thought to
contribute to the fluorescence backgrodnd.Although Raman bands are clearly
distinguished above the background, its presenseltsein higher shot noise and
therefore decreases the signal-to-noise ratio. thEyrthe background decreases as a
function of time with accompanying spectral vapati This variation interferes with the
multivariate analysis. Thus, it is desirable tthei reduce the background during data
collection or remove it in pre-processing withautroducing artifacts. Most background
removal methods in the literature are based on doer polynomial fitting and

subsequent subtraction. Many researchers havel fihat a fifth-order polynomial best



approximates the shape of the backgrotihd.However, because of the inevitable
introduction of spectral artifacts, some researcheave found that removing the

background does not improve calibration resultsioled from multivariate analysfs.

2.3 Heter ogeneitiesin human skin
Uniform analyte distribution is often a good asstiompfor liquid samples such as blood

serum or even whole blood if stirring is continuouor biological tissue, human skin in
particular, heterogeneity is a major factor. Dethimorphological structures and

molecular constituents of skin have been studiémgusonfocal Raman spectroscopy.

The skin is a layered system with two principleelsy epidermis and dermis. The
epidermis is the outmost layer of skin and itselhsists of multiple layers such as the
stratum corneum, stratum lucidum, and stratum domomn. The major constituent of
human epidermis is keratin, comprising approxinya®&% of the stratum corneum. The
dermis is also a layered tissue composed of matoljagen and elastin. Blood
capillaries are present in the dermis and thusrtégson is targeted for optical analysis.
However, it has been suggested that the majorith@iglucose molecules sampled by a
non-invasive optical technique are present in therstitial fluid, which is usually found
at the epidermis-dermis interfatte.

3. Quantitative considerationsfor Raman spectr oscopy
3.1  Minimum detection error analysis
If all component spectra in a mixture sample ar@vkm the minimum detection error can

be calculated via a simple formula derived by Koal .. ™

Ac= iolfk : (1)
Sk



The first factor on the right hand side, describes the noise in the measured spectrum
and the second factor, slescribes the signal strength, calculated asnone of the K
model component. The last factor,plfs termed the “overlap factor” and can take on

values between 1 and

The overlap factor indicates the amount of nonamtmality (overlap) between thd'k
model component and the other model componentshevatically, the overlap factor is
equal to the inverse of the correlation coefficieatween the'k component spectrurs,
and the OLS regression vectbg,s:

olf, = ; . 2)
corr®os, Sy )

The OLS regression vector, also called the netytmaignal, is the part of thek
component spectrum that is orthogonal to all ietenfts. It is equivalent to the"k

component spectrum when no interferents exist.

Correlation between two vectors is calculated by:

3 (U -0, -7)

corr(uy) = —'= : 3)

Z(ui _U)Zi:(vi -V)?

i=1

In the absence of interferents, the correlatiorffment is equal to 1 and therefore o#

1. In this case, the minimum detection error iBngéel solely on the basis of signal-to-
noise considerations. When interferents exist, ¢bheelation coefficient is always
smaller than 1 and therefore i§ always larger than 1. The minimum detectiaorer

approaches infinity when there is complete overkapd the analyte signal is

indistinguishable.



To estimate the overlap factor for Raman measurera#rglucose in skin, we have used
a 10-component skin-mimicking model. Beginninghatihe spectrum of glucose, spectra
of other constituents with strong Raman signaltigiog collagen type I, keratin, triolein,
actin, collagen type lll, cholesterol, phosphatoiigline, hemoglobin, and water were
added one at a time to increase the model compleXit each addition the correlation
betweenbo s and the glucose spectrum was calculated and ranges1 to 0.73 as

shown in Figure 4. Therefore the overlap factorglocose and skin is estimated at 1.4.

The high molecular specificity of
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. ' As discussed previously, although
Figure 4  Correlation between the OLS

regression vector and the glucose spectruffaman spectroscopy provides good
versus model complexity.

molecular specificity, spectral overlap is ineviabwith the presence of multiple

constituents. Further, the glucose Raman signahig 0.3% of the total skin Raman
signal®®* * Taken into consideration with the varying fluaresce background and
random noise, it is not feasible to quantify thecgise signal by recording the skin
Raman spectrum at only a few wavelengths. For ¢a#meé analysis, multivariate

techniques, which utilize the full-range spectra, employed. In multivariate calibration,

a set of calibration spectra and the associatezbgiiconcentrations are used to calculate

a regression vector. This regression vectorp orector, can be applied to a future



independent spectrum with unknown glucose conteektract the concentratidfi*® An

introduction to multivariate techniques is in CrepX, section Y.

4. Instrumentation
As discussed previously, background fluorescenqeedas observation of Raman signal

from biological tissue using UV-visible excitatiomavelengths. To overcome this
limitation, NIR excitation was employed with Fourigansform spectrometers in the late
1980s!’ With the advent of high quantum efficiency CCDiattors and holographic

diffractive optical elements, researchers have emsingly employed CCD-based
dispersive spectrometets®?* The advantages of dispersive NIR Raman specipgsco
are that compact solid-state diode lasers can leel digr excitation, the imaging

spectrograph can be f-number matched with optideré for better throughput, and

cooled CCD detectors offer shot-noise limited dibec

As a tutorial for the selection of building blocksr a Raman instrument with high

collection efficiency, we present a summary ofkbg design considerations.

4.1  Excitation light source
Laser excitation at one of two wavelengths, 785 &8&d nm, is most common. The

tradeoff lies in that excitation at lower waveldmghas a higher efficiency of generating
Raman scattering but also generates more intercdgtoaind fluorescence. The current
trend is towards the use of external cavity lasedes because they are compact and of
relatively low cost. In other embodiments, argon-iaser pumped titanium-sapphire

lasers are used extensively. The titanium-sappaser can provide higher power output



with broader wavelength tunability, but is bulkeend more expensive to maintain than

diode lasers.

Because Raman scattering occurs at the same eskiftjyegardless of the excitation
wavelength, narrowband excitation must be usedrévgmt broadening of the Raman
bands. Further, the wings of the laser emissiomp(died spontaneous emission) can
extend beyond the cutoff wavelength of the nottterfiused to suppress the elastically
scattered light and obscure low-wavenumber RamadsaThis problem is most severe
in high power diode lasers and a holographic basglma interference laser line filter
with attenuation greater than 6 optical density JO® usually required. Lastly, for

guantitative measurements a photodiode is oftedate& monitor the laser intensity to

correct for fluctuations.

4.2  Light delivery
The filtered laser light can be delivered to theagke either through free-space or through

an optical fiber. In the free-space embodimengsni shaping is usually performed to
correct for astigmatism and other laser light adii§. The incident light at the sample can
be either focused or collimated, depending on ctila considerations. For biological

tissue, the total power per unit area is an importansideration and thus spot size on the

tissue is an oft-reported parameter.

Raman probes constructed from fused silica opfibars have gained much attention
recently. Typically, low-OH content fibers arelized to reduce the fiber fluorescence.
The probe design also includes filters at the Hestd to suppress the fused silica Raman

signal from the excitation fiber and suppress tlasteally scattered light entering the



collection fibers”> Commercial probes are now available and they otfggedness and

easy access to samples with various special or gimad constraints.

4.3  Light collection
As Raman scattering is a weak process, photonspegeious and high collection

efficiency is desired for a higher signal-to-noissio. Specialized optics such as
Cassegrain microscope objectives and non-imagimgbpéidal mirrors have been
employed to increase both the collection spot aimthe effective numerical aperture of

the optical systert’

The majority of photons that exit the air-sampléeeiface are elastically scattered and
remain at the original laser wavelength. Thistighust be properly attenuated or it will
saturate the entire CCD detector. Holographicméitters are extensively employed for
this purpose and can attenuate the elasticallyesedt light to greater than 60D, while
passing the Raman photons with greater than 90Rbefty. However, notch filters are
very sensitive to the incident angle of light ahdd provides less attenuation to off-axis
light. In some instances, the size of the notttbrfis one of the determining factors of

the throughput of an instrument.

Specular reflection, light that is elastically seetd without penetrating the tissue, is also
undesirable. Strategies such as oblique incid&h@e,degree collection geomeftand

a hole in the collection mirror have been realimeceduce its effe’

4.4  Light transport
After filtering out most of the elastically scaterlight, the Raman scattered light must

be transported to the spectrograph with minimura.loBo match the rectangular shape of

the entrance slit of a spectrograph, the originadlynd-shape of the collected light can be



relayed by an optical fiber bundle with the recegvend arranged into a round shape and

the exiting end arranged lineaffy.

45  Spectrograph and detector
In dispersive spectrographs for Raman spectrosdo@ysmission holographic gratings

are often used for compactness and high dispersimhographic gratings can be custom-
blazed for specific excitation wavelengths and me\acceptable efficiency. In addition,
liquid nitrogen cooled and more recently thermolecooled CCD detectors offer high
sensitivity and shot-noise limited detection in thear infrared wavelength range up to
~1um. These detectors can be controlled using pragsuch as Labview to facilitate

experimental studies.

To increase light throughput in Raman systems,Q#® chip size can be increased
vertically to match the spectrograph slit heightwever, large format CCD detectors
show pronounced slit image curvature that mustdpeected in pre-processing (described

below).

As an example of these design considerations, €i§ushows a schematic of the high-
throughput Raman instrument currently used in abofatory. We opted for free space
delivery of the excitation light through a smallldhan an off-axis half-paraboloidal

mirror. Backscattered Raman light is collimatedtiwy mirror and passed through a 2.5”
holographic notch filter to reduce elastically $eedd light. The Raman photons are
focused onto a shape-transforming fiber bundle #thexit end serving as the entrance
slit of an /1.4 spectrometer. The pre-filterinrgge of the spectrometer was removed to
reduce fluorescence and losses from multiple opieenents. The back-thinned, deep

depletion, liquid nitrogen-cooled CCD is 1300x13#fels, height-matched to the fiber



bundle slit. This instrument was specifically dgsd for high sensitivity measurements

in turbid media.
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Figure 5 Schematic of a free space Raman instrunf@ntnoninvasive glucose
measurements used at the MIT Spectroscopy Labgrator

5. DataPre-Processing
After data collection, various pre-processing stgpe undertaken to improve data

qguality. The pre-processing steps chosen can teadifferent calibration results;

therefore it is important for researchers to thgidy document the exact steps taken.

Frequently employed procedures are described ifotlmaving.

51 I mage curvatur e correction
Increase of usable detector area is an effectiyetavanprove light throughput in Raman

spectroscopy employing multi-channel dispersiveespgraphs. However, owing to out-



of-plane diffraction the entrance slit image appearrved® Direct vertical binning of

detector pixels without correcting the curvatursutes in degraded spectral resolution.

Various hardware approaches, such as employingedusiit$® 2% or convex spherical
gratings, have been implementéd.In the curved slit approaches, fiber bundles have
been employed as shape transformers to increasarRight collection efficiency. At
the entrance end the fibers are arranged in a rebiage to accommodate the focal spot,
and at the exit end in a curved line, with curvatwpposite that introduced by the
remaining optical system. This exit arrangemenvese as the entrance slit of the
spectrograph, and provides immediate first ordarection of the curved image, as
described below. However, for quantitative Ramaectoscopy, with substantial
change of the image curvature across the wavelemgigpe of interest (~150 nm) and

narrow spectral features, this first order corm@tis not always satisfactory.

As an alternative to the hardware approach, sofivean be employed to correct the
curved image, with potentially better accuracy #exlibility for system modification. In
our past research, we have developed a softwartgooh@ivolving using a highly Raman
active reference material to provide a sharp imagéhe CCDP Using the curvature of
the slit image at the center wavelength as a guwedetermine by how many pixels in
the horizontal direction each off-center CCD roved®to be shifted in order to generate
a linear vertical image. This pixel shift methos well as the curved-fiber-bundle
hardware approach, ignores the fact that thershige curvature is wavelength dependent.
The resulting spectral quality of the pixel shifetimod is thus equivalent to the curved-

fiber-bundle hardware approath.This issue becomes more important when large CCD



chips and high-NA spectrographs are employed foreimsing the throughput of the

Raman scattered light.

Recently, a software approach using multiple pghgste absorption bands was
developed for infrared spectroscofly.In this section we present a similar method that
was developed concurrently, which calibrates ontiplel Raman peaks to generate a
curvature map. This curvature mapping method sheigsificant improvement over

first-order correction schemes.

The curvature mapping method requires an initiibcation step. In calibration, a full-
frame image is taken with a reference material tieg prominent peaks across the
spectral range of interest, for example, acetantieoTylenol) powder. We chose nine

prominent peaks across the wavelength range ofestieas depicted by the arrows in

Figure 6.
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0.8 1 of the amount of shift for each CCD pixel
o5 / / 1 and a scale factor to maintain signal
© 0.4r 1 . .
/ conservation in each CCD row. Once the
0.2 7
J map and the scale factor are generated,
6 560 1600 15;00

Raman shift (cm™) usually when the system is first set up, the

Figure 6 Raman Spectrum OfCOI’I’eCtion a|gOI’Ithm can be app“ed to
acetaminophen powder, used as the

reference material in the calibration stepfuture measurements.

Nine prominent peaks used as separation

boundaries are indicated by arrows. Significant improvement is observed from
the pixel shift method to the curvature mappinghodt especially toward either side of

the CCD, as can be seen by comparing Figure 7¢c)ajure 7(e). The overall linewidth



reduction in 14 prominent peaks is 7% (FWHM). Suetprovement is significant
considering that the equivalent slit width is ~360. If a narrower slit is employed for
better spectral resolution, the overall linewidgduction will be more significant. Note
that the images were taken with 5-pixel CCD hardweertical binning to reduce the
amount of data, since the curvature is barely epabte within such a short range. The

error introduced by the hardware binning is muds han 1 pixel, and thus negligible.
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5.2  Spectral range selection
Multivariate calibration methods attempt to findespral components based on variance.

The presence of a spectral region with large natygerspecific variations may bias the
algorithm and cause smaller analyte-specific vaeaio be overlooked. Therefore, the

fingerprint’ region from approximately 300-1700 &ris often chosen for analysis.

5.3 Cosmicray removal
Cosmic rays hit the CCD array at random times vaithitrary intensity, resulting in

spikes at individual pixels. When the array is mwd and processed, sharp spectral



features of arbitrary intensities may appear in f@nan spectra. These artifacts are

typically removed before multivariate calibration.

One approach is based on the assumption that dotrgm does not change its intensity
from frame to frame other than due to noise andantosays. Therefore, by comparing
multiple neighboring frames, a statistical algantican be used to identify cosmic rays.
Another solution compares adjacent pixels in theesapectrum and detects abrupt jumps
in intensity from pixel to pixel. Once a cosmig reontaminated pixel is identified, its

value can be replaced by the average of neighbpikeds.

54  Background subtraction
As mentioned in the biological considerations settihe background signal in Raman

spectra is one of the limiting factors in determgithe detection limit. Background
removal techniques only approximate the shape ef lAckground and therefore
improvement in further quantitative analysis iseafimited. However, for qualitative
analysis, background-removed spectra provide batterpretation of the underlying

constituents.

5,5  Random noisereection and suppression
Photon shot-noise limited performance can be aeldiawing a liquid nitrogen cooled

CCD camera. When a detector is shot-noise-limiteelrandom noise can be estimated
by the square root of the measured intensity. Mlost effective way to increase the
signal-to-noise ratio (SNR) under shot noise lichiteonditions is to increase the
integration time of the CCD or the throughput of thstrument. However, extending the
integration beyond a certain timescale offers ntvaekenefit as other errors begin to

dominate performanc®. Once the data are collected, signal processitigeionly way



to further enhance the SNR. Pixel binning along wavelength axis is one method of
increasing the SNR and results indicate an optimahber exists for binned pixels.
However, the drawback to this method is degradatrorspectral resolution. More
commonly employed are Savitzky-Golay smoothing atgms, which retains the data

length.

5.6  Whitelight correction and wavelength calibration
When spectra collected from different instrumentson different days are to be

compared, white light correction and wavelengthbcation are required. White light

correction is performed by dividing the Raman sgetb a spectrum from a calibrated
light source, for example a calibrated tungsterodph lamp measured under identical
conditions. Combinatorial spectral responses efdptical components, the diffraction
grating, and the CCD camera can be effectively rdpand thus reveal more of the
underlying Raman spectral features. Wavelengtibredion is performed to transform

the pixel-based axis into a wavelength-based (arewamber-based) axis, allowing for
comparison of Raman features across instrumenttiraed

6. Invitrostudies
In the following sections, we review the applicatiof Raman spectroscopy to glucose

sensingin vitro.  In vitro studies have been performed using human aqueausrhu
filtered and unfiltered human blood serum, and huménole blood, with promising
results. Results in measurement accuracy aretegpor root mean squared error values,
with RMSECV for cross-validated, and RMSEP for peceetl values. The reader is

referred to the introductory chapter for discussiarthese statistics.



6.1  Aqueoushumor
Lambertet al. have explored the use of Raman spectroscopic mezasuats of glucose

present in the aqueous humor of the 8y&: 3! This is undoubtedly an excellent portal
for optical measurements with potential advantages as easy access and less complex
fluid composition. In spite of these advantagespectroscopic measurement in the eye
carries the risk of injury if the probing light iso intense. Therefore, dosimetry and a
fool-proof light delivery method are important cenas forin vivo human studies.

Recently they demonstrateish vitro predictive capability of Raman spectroscopic
measurements using a PLS calibration model derfvedh an artificial modef® 3
Human aqueous humor (HAH) was used as itheitro sample for prediction and
artificial agueous humor (AAH) was used to condttbe calibration model. In the AAH
model, five analytes including glucose at physiaafconcentrations were designed to
vary independently with little correlation betweamy two analytes. The main advantage
of using an AAH model is to break the glucose-lacteorrelation present in HAH
(correlation coefficient r ~0.4). The sample wécpd in a contact lens for measurement
by a Raman instrument using 785-nm excitation amdliaoscope objective with 180
geometry for Raman signal collection. Each spectmas obtained with excitation

power ~100 mW and integration time ~150 seconds.

They obtained an RMSEP of approximately 1-1.5 mNhvi# ~0.99. Glucose spectral
features were clearly observed in the second PL&orfa further supporting the
calibration accuracy* They pointed out future directions such as fawysbn

demonstrating safety and efficacy in humans andrdehing the relationship between

blood glucose and aqueous humor glucose.



6.2 Blood serum
Unprocessed samples

Our laboratory began investigating noninvasive 8loanalysis using Raman
spectroscopy in the mid 1990%3* The first biological sample study was conductad o
serum and whole blood samples from 69 patients @saven-week peridd. No sample
processing or selection criteria were employedhwite exception of locating a few
samples with extreme glucose concentrations tesgnt the range of diabetes patients’
glucose levels. An 830-nm diode laser was empldgedxcitation and a microscope
objective for light collection. The laser power tae sample was ~250 mW and the
integration time for each spectrum was equivalent300 seconds. The glucose
measurement results in serum were quite encouragitiy PLS calibration providing an
RMSECV of 1.5 mM. However, the glucose measuremesiilts in whole blood result
were not satisfactory because of reduced signal fie high turbidity. Glucose spectral

features were identified in both the PLS weightuggtor and thd vector, supporting

that the calibration model was based on glucose.

With ultrafiltration

Qu et al.® described the use of Raman spectroscopy for nasime glucose
measurements in human serum samples after ulta#ifilh, a process to remove
macromolecules. Ultrafiltration can effectivelyinginate Raman signals from large
protein molecules that dominate unfiltered serumpas, thus significantly improving
the signal-to-noise ratio and therefore the detectimit. Nevertheless, it is time

consuming and requires extra sample preparation.



The experimental setup employed 785-nm excitatigitm & 90 collection geometry.
Each spectrum was obtained with excitation powedO~-8W and integration time
equivalent to 2.5 minutes. Because filtered sersnmearly transparent at 785 nm,
excitation of Raman scattering is effectively aldhg entire laser path, creating a line-
source in the cuvette. Thus the authors surmesebigtter collection efficiency could be
obtained with optics designed specifically for thygpe of source, as opposed to the

standard spherical lens they employed.

Regardless of potential collection efficiency impements, they obtained an RMSEP of
0.38 mM. However, the PLS calibration model watoted using 30 samples with 12
factors retained for the development of the regoesgector. Without reported evidence
of glucose spectral features it is difficult to el@ine whether the data was overfit. The
model was applied to 24 samples that were not @ dalibration set, giving some

justification to the analysis.

Rohlederet al.*® described measurement of glucose in both serumfilaced serum
from 247 blood donors. A commercial spectrometas wsed to acquire the spectra with
785-nm excitation and a double holographic gratiogering a wavelength range of 785-
1082 nm. Spectra were obtained with excitation ggow200 mW at the sample and
integration time ~300 s. PLS calibration modelsevgenerated based on 148 samples
and employed to predict the concentrations of émeaining 99 samples. They obtained
an RMSEP of 0.95 (R~0.97) and 0.34 (R~0.996) mM in unfiltered and filtered serum

samples, respectively.



6.3 Wholeblood
The main difficulty for measurement in whole bloasl compared to serum is the much

higher absorption and scattering of whole bloodhatted to the presence of hemoglobin
and red blood cells , respectively. The combinat@ffect is a ~4X decrease in collected

analyte Raman signal.

A subsequent whole blood study by Enejeéeml.?” in our laboratory confirmed this
hypothesis and they were able to demonstrate thsibiéity of measuring multiple
analytes in 31 whole blood samples with laser isitgrand integration time similar to the
previously mentioned serum stutfyA 4X increase in Raman signal collection was
achieved by employing a paraboloidal mirror andhape-transforming fiber bundle for
better collection efficiency, as depicted in Fighre PLS leave-one-out cross validation
was performed and an RMSECV of 1.2 mM was obtain€de number of PLS factors
compared to the number of samples raises the aoméaverfitting. However, glucose
spectral features were identified in the regressextor, providing more confidence that

the model was based on glucose.

7. Invivo studies

7.1  Tissue modulation approach
Chaikenet al. ** 3¢ ¥ proposed using Raman spectroscopy to measuresgliteivo

with a technique called “tissue modulationi’e., continuously press/unpress the
measurement site with a mechanical apparatus. bék& principle is that during the
“press” phase, blood is expelled from the measusitg and thus the spectrum is
considered as nearly devoid of blood. During thptess” phase, the spectrum is

considered to be a sum of both blood and othardissnstituents.



In a recent repoft. the difference spectrum between pressed and sgatgzhases was
interpreted as the whole blood spectrum. Eachtspacwas obtained with excitation
power ~31 mW and integration time ~100 secondspaignt glucose signal and blood
volume factor were extracted by summing over 686-8m* and 1800-1000 cthin the
difference spectrum, respectively. Integrated radized unit (INU) was then defined as
the ratio of the apparent glucose signal to the@dleolume factor. They claimed that
375-686 crit contains the most glucose information and 18001@6" contains mostly
fluorescence plus Raman signal from other tissuestdoents, indicative of blood

volume.

18 spectroscopic samples paired with fingersti¢kremce measurements were collected
from an individual over two days with a time-randped protocol. A calibration model
was built by fitting a line through the plot of INkkrsus reference glucose concentration.
The model was then applied to 31 samples colleated the next 14 weeks (7 additional
samples from the same individual and 24 from d&iférindividuals). After rejecting 11
outliers, they obtained a correlation coefficiemtaf 0.8 and a standard deviation of ~1.2

mM.

Their work presents an interesting idea to isolhgeglucose-containing blood spectrum
by tissue modulation. The result suggests thatIiig not only correlates to the
reference glucose concentration, but also hemagloWwhich raises the concern of
specificity. This technique can potentially be fus& several issues can be addressed.
First, summation over 686-375 €nobviously includes contributions from interferents
and it is not clear how much error that introducés.addition, hemoglobin is not the

only substance that fluoresces and thus it is anclhy the calculated blood volume



factor could be representative of actual blood m@u Further, it is likely that most
glucose Raman signal measured from skin originft@® glucose molecules in the
interstitial fluid. It is therefore unclear if thresults were indeed based on blood glucose

as claimed by the authors.

7.2  Direct approach
In our laboratory, Enejdegt al. conducted a transcutaneous study on 17 non-diabeti

volunteers using a version of the instrument degiicn Figure 5. Spectra were collected
from the forearm of human volunteers in conjunctiath an oral glucose tolerance test
protocol, involving the intake of a high-glucosentaining fluid, after which the glucose
levels are elevated to more than twice that foundeu fasting conditions. Periodic
reference glucose concentrations were obtained fiiogerstick blood samples and
subsequently analyzed by a Hemocue device. Theosggu concentrations for all
volunteers ranged from 3.8 to 12.4 mM (~68-223 rhp/d

Raman spectra in the range 1545-355'amere selected for data analysis. An average of
27 (461/17) spectra were obtained for each indaliduith a 3-min integration time per
spectrum. Each spectrum was obtained with exaitgtiower ~300 mW and integration
time equivalent to 3 minutes. Spectra from eadbnteer were analyzed using PLS with
leave-one-out cross validation, with 8 factorsiretd for development of the regression
vector. For one subject, a mean absolute errorEMéf 7.8% (RMSECV ~ 0.7 mM)
and an Rof 0.83 was obtained. When data from 9 volunteene combined, the MAE
was 12.8% with R ~0.7, while combining all 17 volunteers gave MAHR6-9%
(RMSECV ~ 1.5 mM). The number of PLS factors comepao the number of spectra is

in danger of overfitting in an individual calibrati. However, the grouping schemes



involving 9 (244 spectra) and 17 (461 spectra) ndars utilized 17 and 21 factors,
respectively, which is more acceptable. Anothe&woeraging piece of evidence was that
multiple glucose spectral features were identifrethe regression vectors, indicating that

the calibration was at least partially based orcaggte.

This study was an initial evaluation of the abiltf Raman spectroscopy to measure
glucose non-invasively with the focus on determgniis capability in a range of subjects.
The protocol did not include measurements on thenteers over a number of days and
thus independent data was not obtained. Furtral,glucose tolerance test protocols
are susceptible to correlation with the fluoreseem@ackground decay, which may
enhance the apparent prediction results. Therefooge studies, preferably involving

glucose clamping performed on different days, aggiired.

8. Toward prospective application
The results from than vitro andin vivo studies reviewed in the previous sections are very

encouraging. They demonstrate the feasibility aflding glucose-specifian vivo
multivariate calibration models based on Ramantspsmopy. To bring this technique to
the next level, prospective application of a cailun algorithm on independent data with
clinically acceptable detection results needs taémonstrated. From our perspective,
this objective requires advances to be made inaetiig glucose information without
spurious correlations to other system componerdscarrecting for variations in subject
subject tissue morphology and color. We have dgexl new tools to address these
issues. Specifically, a novel multivariate caltima technique with higher analyte

specificity that is more robust against interfereatvariation or chance correlation was



developed. This technique, constrained regulaozats described in section 8.1. Also,
a new correction method to compensate for turbigithyced sampling volume variations
across sites and individuals was developed. Tkrthaod, intrinsic Raman spectroscopy,
is introduced in section 8.2. Additionally, othewsnsiderations for successful vivo

studies such as reference concentration accurgtyna collection site determination,

etc., will be discussed in the context of futunediions.

8.1  Analyte-specific information extraction using hybrid calibration methods
Multivariate calibration methods are in general analyte-specific. Calibration models

are built based on correlations in the data, whichy be owing to the analyte or to
systematic or spurious effects. One way to effetyi boost the model specificity is
through incorporation of additional analyte-spexififormation such as its pure spectrum.
Hybrid methods merge additional spectral infornratiath calibration data in an implicit
calibration scheme. In the following, we presewmb bf these methods developed in our

laboratory.

8.1.1 Hybrid linear analysis(HLA)
Hybrid linear analysis was developed by Berggral.® First, analyte spectral

contributions are removed from the sample specyrasubtracting the pure spectrum
according to reference concentration measuremeritse resulting spectra are then
analyzed by principal component analysis with digant principal components

extracted. These principal components are subsdgueed as basis spectra to perform
an orthogonalization process on the pure analy¢etsgm. The orthogonalization results
in ab vector that is essentially the portion of the pamalyte spectrum that is orthogonal

to all interferent spectra, akin to the net anasjtmal.



HLA was implemented experimentalip vitro with a 3-analyte model composed of
glucose, creatinine, and lactate. Significant mvpment over PLS was obtained owing
to the incorporation of the pure glucose spectrumthe algorithm development.
However, because HLA relies on the subtraction hef &nalyte spectrum from the
calibration data, it is highly sensitive to the aaxcy of the spectral shape and its
intensity. For complex turbid samples in which@psion and scattering are likely to
alter the analyte spectral features in unknown wawsfind that the performance of HLA
is impaired. Motivated by advancing transcutanemessurement of blood analytes
vivo, constrained regularization was developed as aenrobust method against

inaccuracies in the pure analyte spectra.

8.1.2 Constrained regularization (CR)
To understand constrained regularization, multataricalibration can be viewed as an

inverse problem. Given the inverse mixture modekfsingle analyte:

c=S'b. (4)
The goal is to invert Eqg. (4) and obtain a solutionb. Factor-based methods such as

principal component regression (PCR) and partiaktlesquares (PLS) summarize the
calibration data, $,c], using a few principal components or loading vest Whereas
constrain regularization (CR) seeks a balance k@twaodel approximation error and

noise propagation error by minimizatiing the castdtion,®:>°
2
D(A,by) =[STo~d" + Ao~ b,|”, (5)
with ||a the Euclidean normi.¢., magnitude) ofa, andbo a spectral constraint that

introduces prior information abolt The first term ofd is the model approximation

error, and the second term is the norm of the iffee between the solution and the



constraint, which controls the smoothness of thietiem and its deviation from the
constraint. Ifbg is zero, the solution is the common regularizeldtsam. ForA=0 the
least squares solution is then obtained. In therdimit, in which/A goes to infinity, the

solution is simplyb=by.

A reasonable choice fdyyis the spectrum of the analyte of interest becaligkis the
solution forb in the absence of noise and interferents. Anatheice is the net analyte
signaf® calculated using all of the known pure analytecgpe Such flexibility in the
selection ofbg is owing to the manner in which the constraintnisorporated into the
calibration algorithm. For CR, the spectral coaisitr is included in a nonlinear fashion
through minimization ofd, and is thus termed a “soft” constraint. On tlieeo hand,
there is little flexibility for methods such as HLAn which the spectral constraint is
algebraically subtracted from each sample spectrafare performing PCA. We term

this type of constraint a “hard” constraint.

In numerical simulations and experiments with esgthantoms, we found that with CR
the RMSEP is lower than methods without prior infation, such as PLS, and is less
affected by analyte co-variations. We further destated that CR is more robust than
HLA when there are inaccuracies in the applied traig, as often occurs in complex or

turbid samples such as biological tiséle.

An important lesson learned from the study is thare is a trade-off between
maximizing prior information utilization and robustss concerning the accuracy of such
information.  Multivariate calibration methods randgrom explicit methods with
maximum use of prior informatiore.. OLS, least robust when accurate model is not

obtainable), hybrid methods with an inflexible cwamt (e.g. HLA), hybrid methods



with a flexible constraintglg. CR), and implicit methods with no prior informati¢e.g.
PLS, most robust, but is prone to be misled byispsrcorrelations). We believe CR

achieves the optimal balance between these idealsctical situations.

8.2  Sampling volume correction using intrinsic Raman spectr oscopy
Sample variability is a critical issue in prospeetapplication. For optical technologies,

variations in tissue optical properties such agii®n and scattering coefficients can
create distortions in measured spectra. This @eqgirovides a brief overview of
techniques to correct turbidity-induced spectral artensity distortions in fluorescence
and Raman spectroscopy, respectively. In particytdooton migration theory is
presented as an analytical tool to model diffudtectance, fluorescence and Raman
scattering arising from turbid biological sampldglonte Carlo simulation is introduced
as an effective and statistically accurate toohwonerically model light propagation in
turbid media. Using the photon migration model akidnte Carlo simulations,

preliminary results of intrinsic Raman spectroscapy presented.

8.2.1 Optical propertiesbiological tissue
Light propagation in turbid media such as biolobitasue is governed by elastic

scattering and absorption of the media. Elastattedng is a phenomenon in which the
direction of the photon is changed but not its gpeusually owing to discontinuities in
material propertiese(g. refractive index) in the media, and absorptiothiss conversion
of light energy into another form of energy (usyatiermal energy). Most analytical and
numerical models employ macroscopic optical proeertincluding the absorption
coefficient, pa (cm?), the scattering coefficienfis (cm), the single scattering angbe

and the elastic scattering anisotropy, g = €eco®verage cosine of the single scattering



angle. The absorption and scattering coefficiemésthe probability of a photon being
absorbed or scattered per unit path length. Time stip, and s is called the total
attenuation coefficienty, with its inverse defined as the mean free depthe phase
function is a probability density function of theastering deflection angle, describing the
probability of a scattering angle at which singtatsering event occurs. For example, the
Heyney-Greestein phase functforis often used to approximate tissue scattering. |

general, these optical properties are wavelengplermdent.

Optical properties of biological tissue are knowm he affected by physiological

conditions, tissue morphology, and laser irradratidifferent levels of hematocrit (red
blood cells) in whole blood cause different absorp{hemoglobin) and scattering (red
cells) properties. Similarly, different skin layérickness, morphology, and melanin
content cause optical turbidity to vary. Such ity variations exist across different
tissue sites or individuals, and are generally Blexarying in time. On the other hand,
laser irradiation can cause shorter time scale ¢eahariations in turbidity, typically as

a result of heatind’

A limiting factor in noninvasive optical technologgy variations in the optical properties

of samples under investigation that result in spédistortion§>*’

and sampling volume

(effective optical pathlength) variabilif§:>® These variations will impact a noninvasive
optical technique not only in interpretation of spal features, but also in the
construction and application of a multivariate loedtion model if such variations are not

accounted for. As a result, correction methodsirieeébe developed and applied before

further quantitative analysis. For Raman spectpggcrelatively few correction methods



appear in the literature, and most of them areeadily applicable to biological tissa&.
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In fluorescence spectroscopy, however, diffuseectfince correction of spectral
distortions in biological media has been studietbresively. Analytical models based on
photon migration theor§?, diffusion theory*> *® °% as well as empirical model§ have
been reported to obtain “intrinsic fluorescencelri the following, we will review a

particular correction method based on photon mignattheory for fluorescence

spectroscopy, and introduce its Raman counterpart.

8.2.2 Correctionsbased on photon migration theory
Light propagation in turbid media can be describgdhe radiative transfer equatioh.

However, the analytical solution to this integrdfetiential equation can be found only
for very special conditions and approximations. eThmost extensively studied
approximation is diffusion theory, which is used nwodel photons that experience
multiple scattering evenfé. Another very useful approximation is photon miigna
theory, developed by Wet al.** ** This method employs probabilistic concepts to
describe the scattering of light and to set upaaéwork that allows the calculation of
the diffuse reflectance from semi-infinite turbickdia. The total diffuse reflectance from

a semi-infinite medium can be written as:

R, =an(g)*a“, (6)
with f,(g) the photon escape probability distributionhe humber of scattering events
before escaping, g the scattering anisotropy, anttheaalbedo (J/(Ust Ha)). Two
fundamental assumptions are made: the photon egcapability distribution of a semi-

infinite medium only depends on the number of scaty events and anisotropy; the



lineshape of the escape probability distributiom dse approximated by exponential
function, i.e, f.(g)= k(g)e“9". These assumptions are validated by Monte Carlo

modeling.

In the same paper, Wet al. derived an analytical equation relating measured
fluorescence (F) to the intrinsic fluorescence ,(IBgfined as the fluorescence as

measured from a optically-thin slice of tissueptigh diffuse reflectance (R§:**

E= 1 a, —a,
l-a,) R,-R,

(7)
with IF the intrinsic fluorescence, a the albedud & the diffuse reflectance. Subscripts

x and, denote quantities at the excitation and emissiavelengths, respectively.

This equation and its variants have been employeddover turbidity-free fluorescence
spectra from various types of tissue. The comectfacilitates interpretation of

underlying fluorophores and consequently improvesaccuracy of disease diagndsis.
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The same general principle that applies for inicirfkiorescence should hold true for
Raman spectroscopy as well. Unlike in fluorescespectroscopy, spectral distortion
owing to prominent absorbers is less of an issubarNIR wavelength range. However,
for quantitative analysis the turbidity-induced gdimg volume variations become very

significant and usually dominate over spectralatigins.

An equation analog to Eg. (7) can be derived ferititrinsic Raman signal (IR) under
semi-infinite conditions (sample extends into af ddne and all unabsorbed photons

eventually exit the air/sample interface):



IR =, Ramx %= 8)
Y R, ~ Rk
Because most Raman instruments rely on a notar fitt prevent CCD saturation from
elastically scattered light, diffuse reflectancehat excitation wavelength is not directly
available. Monte Carlo simulations and experimen¢sults show that the intrinsic
Raman signal for arbitrary samples, as well asecoin geometries, can be more

conveniently described by:

Ram

IR = _— .

Parameters in Eqg. (9) can be experimentally cdbdraand employed to obtain the

intrinsic Raman signal.

8.2.3 Monte Carlo method
Monte Carlo simulation is a statistical tool basedmacroscopic optical properties that

are assumed to extend uniformly over small unitssstie volumei(e., a voxel). A pre-
defined grid is employed to simulate photon-tissueraction sites. The mean free path
of the photon-tissue interaction sites typicallpyges from 10-100@um. This method
does not consider the details of energy distrilbutiathin voxels. Photons are treated as
classical particles, and the wave features areeneml® ® Since its early introduction
as a tool to simulate photon elastic scatteringabdities such as polarizatiSf, ©°
temporal resolutiof® fluorescenc8’ and Raman scatterifghave been developed.
Details of the Monte Carlo simulation for diffuseflectance (the core program) are well

documented in the literatuf@.



8.2.4 Intrinsic Raman spectroscopy (IRS)
To test Eq. (8), the product (RamY is plotted versus the ratio {fRy)/(a-an) in Figure

8 using results from Monte Carlo simulations. Tih&insic Raman signal can be
obtained from the slope of the linear fit. NotattlEq. (8) is only legitimate when the
semi-infinite condition holds, but expression Ey.&hould be valid for any sample
geometry. To test Eg. (9), the product (Raghis plotted versus Rin Figure 9 using
results from Monte Carlo simulations. The fit kastcurve is the intrinsic Raman signal
and can be used to correct for sampling volumeatiaris. It can be seen that this
expression fits less well in the presence of higoaption (lower Raman and reflectance).
However, such high absorption cases in generataaeein biological tissue in the NIR

spectral region.
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Figure 8 (Ramfy) versus (RRm)/(a-an). Figure 9 (Ramfy) versus R. The fit to
The slope is the intrinsic Raman signal. the curve can be used to correct for
sampling volume variation.

To apply IRS, one needs to knqwof the samples. Extraction of optical properties
been studied by many researcH&r€. The majority of methods are based on diffusion

theory or variants of it. Our laboratory extraofgtical properties from biological tissue



routinely in other wavelength ranges and a simmt@thod could be employed for this

purpose’?

8.3 Other considerations and futuredirections
The results presented above are promising. Howef@r non-invasive Raman

spectroscopy to be applied prospectively with chily acceptable accuracy, several
additional modifications/improvements/advances/dneebe implemented. We address

these below.

Accurate reference concentration measurements

An additional factor that greatly affects the pemi@ance of the calibration algorithm is
the accuracy of the reference measurements. birspeopic techniques such as Raman,
a large portion of the collected glucose signakliik originates from the glucose
molecules in the interstitial fluid (ISF). In atidn, it is well known that the interstitial
glucose lags the plasma glucose concentration fdm30 minutes in humar3. As a
result, using plasma glucose as the reference ntmatien may introduce errors.
Methods of extracting interstitial fluid for glueseference measurements should be

explored.

Background signal and its variations over time

As mentioned earlier, the intense background, #ljyicdescribed as fluorescence, can
limit the detection accuracy in three aspects:nbse associated with the background
decreases the SNR; the changes in its spectraé shagy time confounds the calibration
algorithm; and its intensity variations over timatroduces non analyte-specific

correlation into the calibration model. Unfortuelst the background-associated noise



can not be removed by background removal techniqiesther, it has been found that
removing the background using polynomial fittingedanot improve calibration results,

potentially owing to non-analyte-specific artifatts Thus, methods to reduce the
background signal at its origin should be exploredne approach may be using pre-
photobleaching combined with intentional motion kgr example, scanning the

illumination spot around an area slightly largedritthe spot itself. With such a scheme,
the apparent background can be lower to start vatid the photobleaching can be

reduced.

Optimal probing depth through accurate sample jpogitg

The probing depth and sample positioning are atitior optimal collection of glucose-

specific Raman scattered photons and calibratianster. In experiments, the optimal
probing depth can be estimated from extracted alpfcoperties, and therefore the
correct distance between the sample-and the colteoptic can be determined for each
measurement site. To address this, a fundamenidly sif morphological and layer
structures at the probing site should be carriedvdth a computer-controlled 3-axis
precision stage, as has been done on particulas parskin?® Becausemost Raman

scatterers have specific spatial distribution imgslsuch as keratin in the epidermis,
collagen in the dermisic., a two-layer model can be developed and utiliz8dzen such

distinctive spatial distributions between keratimdaollagen, we can obtain information
about the probing depth and even layer thicknessohyparing the relative magnitude of
keratin and collagen Raman signals. By knowing ékact sampling volume and its

coverage of various skin morphological structuses, can estimate how much of the



glucose-containing regiordgrmis in the two-layer model) is sampled. This inforioat

can effectively lead to better reference conceiotnat improving the calibration accuracy.

Motion artifacts and skin heterogeneity

A key component to obtaining accurate and robulbregions is the sample interface.
The sample interface should ideally limit motionilwhmaintaining a constant pressure
and temperature. One approach to combat inadhartetion artifacts is to intentionally
build motion into the calibration model. This da@ achieved by scanning the laser spot

within a larger area.

Optimal data collection site

Individual calibration models based on cross vaiamacan be established for several
candidate sites such as forearm, fingernail, etd, the results can be compared. The

minimum detection error analysis can also be engaldg evaluate different sites.

9. Conclusion
Quantitative Raman spectroscopy is a promising nigcle for noninvasive glucose

sensing. From its early development withvitro studies by several groups) vivo
studies have been realized with the aid of more@aded instrumentation and calibration
algorithms. Than vivo studies performed to date have demonstrated tsabiéty of
obtaining glucose-specific multivariate calibratiorodels. For Raman spectroscopy to
be a viable clinical technique, successful prospedtudies must be carried out. From
our perspective, breakthroughs have to be madaearfdilowing directions: enhancing

glucose specificity, correcting for diversity acosndividuals, accurate reference



concentration measurements, reducing the fluorescbackground, sample positioning

and interface, and optimal site determination.

In this chapter we presented our research effathessing the first two issues with
constrained regularization and intrinsic Raman spscopy, respectively. These
techniques will play a critical role in prospectivstudies involving multiple
sites/subjects/days. We are currently planningafarultiple-subject and multiple-day
vivo study, first on dogs and then on humans. We elihese new developments
together with a robust sample interface will enabke to demonstrate prospective

applicability.
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