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1. Introduction to Raman spectroscopy 

Light that is scattered from a molecule is primarily elastically scattered, that is, the 

incident and the scattered photons have the same energy.  A small probability exists, 

however, that a photon is scattered inelastically, resulting in either a net gain or loss of 

energy of the scattered photon.  This inelastic scattering, discovered by Raman and 

Krishna,1 allows fundamental molecular vibrational transitions to be measured at any 

excitation wavelength. 

Raman scattering is a coherent one-step process in which one photon is exchanged for 

another through interaction with a molecule.  Schematically, the Raman process is 

depicted as a molecule in an initial vibrational state proceeding to a higher or lower 

vibrational state through excitation to a “virtual state,” with simultaneous scattering of a 

new photon from this state.  The difference in energy between the incident and scattered 

photon is equal to the energy difference between the initial and final vibrational states of 

the molecule.  A loss in photon energy is termed Stokes-Raman scattering and a gain in 

photon energy is termed anti-Stokes-Raman scattering.2  These processes are depicted in 

Figure 1.   

Not all vibrational transitions can be accessed by Raman scattering.  Raman-active 

transitions are those associated with a change in polarizability of the molecule.  In 

classical terms, this can be viewed as a perturbation of the electron cloud of the molecule.   

A Raman spectrum is a plot of scattered light intensity versus energy shift (also called 

Raman shift) reported in wavenumbers (cm-1).  An example spectrum of aqueous glucose 

is shown in Figure 2.  To convert from a wavenumber shift to wavelength, the incident 

wavelength must be known.  For example, a 600 cm-1 Raman shift occurs at 873.5 nm if 



the excitation wavelength is 830 nm (1×10-7/(1/830×10-7 cm-1-600 cm-1)=873.5 nm) or at 

823.8 nm if the excitation wavelength is 785 nm.   
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Figure 1. Energy diagram for Rayleigh, 
Stokes Raman, and anti-Stokes Raman 
scattering. 

Figure 2. A Raman spectrum consists of 
scattered intensity plotted vs. energy.  This 
figure uses glucose water solution 
measured in a quartz cuvette as an 
example. 

 

In this chapter we focus on non-resonant spontaneous Raman scattering.  A special case 

of Raman scattering, surface-enhanced Raman spectroscopy (SERS), is discussed in 

Chapter X. 

 

2. Biological considerations for Raman spectroscopy 

2.1 Using near infrared radiation 

Raman shifts are independent of excitation wavelength and thus Raman spectroscopy 

offers the flexibility to select a suitable excitation wavelength for a specific application.  

The choice of NIR excitation for probing biological tissue is justified by three 

advantageous features: low-energy optical radiation, deep penetration, and reduced 

background fluorescence.  Light in the NIR region is non-ionizing and therefore does not 



pose the same exposure risk as X-ray radiation.  Additionally, NIR light penetrates 

relatively deep into the tissue, on the order of mm – cm in some spectral windows.  These 

depths are possible due to reduced elastic scattering, which decreases at longer 

wavelengths, and the lack of significant absorption bands in this region.  Fluorescence is 

also much lower in the NIR region as compared to shorter wavelengths, thus allowing the 

less intense Raman bands to be resolved. 

Figure 3 illustrates the absorption spectra of major endogenous tissue absorbers, namely, 

water, skin melanin, hemoglobin, and fat.  Also shown is the scattering spectrum of 10% 

intralipid, a lipid emulsion often used to simulate tissue scattering.  The “diagnostic 

window,” in which a group of minima exists, is outlined. 

A final consideration for the selection of excitation wavelength in Raman spectroscopy is 

the efficiency of the silicon-cased charge coupled device (CCD) detector.  Due to silicon 

absorption, CCD detectors are prohibitively inefficient above 1000 nm. As a result, 785 

nm or, more recently, 830 nm are often chosen as the excitation wavelength to fully 

exploit the “diagnostic window” while retaining an acceptable quantum efficiency 

detector. 
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Figure 3. Absorption spectra of water, skin melanin, hemoglobin, and fat.  Also shown is 
the scattering spectrum of 10% intralipid, a lipid emulsion often used to simulate tissue 
scattering.  Data are obtained from http:// omlc.ogi.edu/spectra/index.html. 

2.2 Background signal in biological Raman spectra 

Although greatly reduced in intensity as compared to UV-visible excitation, NIR Raman 

spectra of biological samples are often accompanied by a strong background, generally 

attributed to fluorescence.  Macromolecules such as proteins and lipids are thought to 

contribute to the fluorescence background.3  Although Raman bands are clearly 

distinguished above the background, its presence results in higher shot noise and 

therefore decreases the signal-to-noise ratio.  Further, the background decreases as a 

function of time with accompanying spectral variation.  This variation interferes with the 

multivariate analysis.  Thus, it is desirable to either reduce the background during data 

collection or remove it in pre-processing without introducing artifacts.  Most background 

removal methods in the literature are based on low-order polynomial fitting and 

subsequent subtraction.  Many researchers have found that a fifth-order polynomial best 



approximates the shape of the background.4-7  However, because of the inevitable 

introduction of spectral artifacts, some researchers have found that removing the 

background does not improve calibration results obtained from multivariate analysis.8 

2.3 Heterogeneities in human skin 

Uniform analyte distribution is often a good assumption for liquid samples such as blood 

serum or even whole blood if stirring is continuous.  For biological tissue, human skin in 

particular, heterogeneity is a major factor.  Detailed morphological structures and 

molecular constituents of skin have been studied using confocal Raman spectroscopy.9 

The skin is a layered system with two principle layers: epidermis and dermis.  The 

epidermis is the outmost layer of skin and itself consists of multiple layers such as the 

stratum corneum, stratum lucidum, and stratum granulosum.  The major constituent of 

human epidermis is keratin, comprising approximately 65% of the stratum corneum.  The 

dermis is also a layered tissue composed of mainly collagen and elastin.  Blood 

capillaries are present in the dermis and thus this region is targeted for optical analysis.  

However, it has been suggested that the majority of the glucose molecules sampled by a 

non-invasive optical technique are present in the interstitial fluid, which is usually found 

at the epidermis-dermis interface.10  

3. Quantitative considerations for Raman spectroscopy 

3.1 Minimum detection error analysis 

If all component spectra in a mixture sample are known, the minimum detection error can 

be calculated via a simple formula derived by Koo et al.:10, 11 
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The first factor on the right hand side, σ, describes the noise in the measured spectrum 

and the second factor, sk, describes the signal strength, calculated as the norm of the kth 

model component.  The last factor, olfk, is termed the “overlap factor” and can take on 

values between 1 and ∞.   

The overlap factor indicates the amount of non-orthogonality (overlap) between the kth 

model component and the other model components.  Mathematically, the overlap factor is 

equal to the inverse of the correlation coefficient between the kth component spectrum, sk, 

and the OLS regression vector, bOLS: 
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The OLS regression vector, also called the net analyte signal, is the part of the kth 

component spectrum that is orthogonal to all interferents. It is equivalent to the kth 

component spectrum when no interferents exist.   

Correlation between two vectors is calculated by: 
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In the absence of interferents, the correlation coefficient is equal to 1 and therefore olfk = 

1.  In this case, the minimum detection error is defined solely on the basis of signal-to-

noise considerations.  When interferents exist, the correlation coefficient is always 

smaller than 1 and therefore olfk is always larger than 1.  The minimum detection error 

approaches infinity when there is complete overlap and the analyte signal is 

indistinguishable.  



To estimate the overlap factor for Raman measurements of glucose in skin, we have used 

a 10-component skin-mimicking model.  Beginning with the spectrum of glucose, spectra 

of other constituents with strong Raman signals including collagen type I, keratin, triolein, 

actin, collagen type III, cholesterol, phosphatidylcholine, hemoglobin, and water were 

added one at a time to increase the model complexity.  At each addition the correlation 

between bOLS and the glucose spectrum was calculated and ranges from 1 to 0.73 as 

shown in Figure 4.  Therefore the overlap factor for glucose and skin is estimated at 1.4.  

The high molecular specificity of 

Raman spectra results in less spectral 

overlap thus enabling the detection of 

low signal strength components such as 

glucose.   

3.2 Multivariate calibration 

As discussed previously, although 

Raman spectroscopy provides good 

molecular specificity, spectral overlap is inevitable with the presence of multiple 

constituents.  Further, the glucose Raman signal is only 0.3% of the total skin Raman 

signal.12, 13  Taken into consideration with the varying fluorescence background and 

random noise, it is not feasible to quantify the glucose signal by recording the skin 

Raman spectrum at only a few wavelengths. For quantitative analysis, multivariate 

techniques, which utilize the full-range spectra, are employed.  In multivariate calibration, 

a set of calibration spectra and the associated glucose concentrations are used to calculate 

a regression vector.  This regression vector, or b vector, can be applied to a future 
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Figure 4  Correlation between the OLS 
regression vector and the glucose spectrum 
versus model complexity. 



independent spectrum with unknown glucose content to extract the concentration.14-16 An 

introduction to multivariate techniques is in Chapter X, section Y. 

 

4. Instrumentation 

As discussed previously, background fluorescence impedes observation of Raman signal 

from biological tissue using UV-visible excitation wavelengths.  To overcome this 

limitation, NIR excitation was employed with Fourier-transform spectrometers in the late 

1980s.17  With the advent of high quantum efficiency CCD detectors and holographic 

diffractive optical elements, researchers have increasingly employed CCD-based 

dispersive spectrometers.3, 18-24  The advantages of dispersive NIR Raman spectroscopy 

are that compact solid-state diode lasers can be used for excitation, the imaging 

spectrograph can be f-number matched with optical fibers for better throughput, and 

cooled CCD detectors offer shot-noise limited detection.   

As a tutorial for the selection of building blocks for a Raman instrument with high 

collection efficiency, we present a summary of the key design considerations.     

4.1 Excitation light source  

Laser excitation at one of two wavelengths, 785 and 830 nm, is most common.  The 

tradeoff lies in that excitation at lower wavelengths has a higher efficiency of generating 

Raman scattering but also generates more intense background fluorescence.  The current 

trend is towards the use of external cavity laser diodes because they are compact and of 

relatively low cost.  In other embodiments, argon-ion laser pumped titanium-sapphire 

lasers are used extensively.  The titanium-sapphire laser can provide higher power output 



with broader wavelength tunability, but is bulkier and more expensive to maintain than 

diode lasers.   

Because Raman scattering occurs at the same energy shift regardless of the excitation 

wavelength, narrowband excitation must be used to prevent broadening of the Raman 

bands.  Further, the wings of the laser emission (amplified spontaneous emission) can 

extend beyond the cutoff wavelength of the notch filter used to suppress the elastically 

scattered light and obscure low-wavenumber Raman bands.  This problem is most severe 

in high power diode lasers and a holographic bandpass or interference laser line filter 

with attenuation greater than 6 optical density (OD) is usually required.  Lastly, for 

quantitative measurements a photodiode is often needed to monitor the laser intensity to 

correct for fluctuations. 

4.2 Light delivery 

The filtered laser light can be delivered to the sample either through free-space or through 

an optical fiber.  In the free-space embodiments, beam shaping is usually performed to 

correct for astigmatism and other laser light artifacts.  The incident light at the sample can 

be either focused or collimated, depending on collection considerations.  For biological 

tissue, the total power per unit area is an important consideration and thus spot size on the 

tissue is an oft-reported parameter.  

Raman probes constructed from fused silica optical fibers have gained much attention 

recently.  Typically, low-OH content fibers are utilized to reduce the fiber fluorescence. 

The probe design also includes filters at the distal end to suppress the fused silica Raman 

signal from the excitation fiber and suppress the elastically scattered light entering the 



collection fibers.25  Commercial probes are now available and they offer ruggedness and 

easy access to samples with various special or geometrical constraints.   

4.3 Light collection  

As Raman scattering is a weak process, photons are precious and high collection 

efficiency is desired for a higher signal-to-noise ratio.  Specialized optics such as 

Cassegrain microscope objectives and non-imaging paraboloidal mirrors have been 

employed to increase both the collection spot size and the effective numerical aperture of 

the optical system.10   

The majority of photons that exit the air-sample interface are elastically scattered and 

remain at the original laser wavelength.   This light must be properly attenuated or it will 

saturate the entire CCD detector.  Holographic notch filters are extensively employed for 

this purpose and can attenuate the elastically scattered light to greater than 6OD, while 

passing the Raman photons with greater than 90% efficiency.  However, notch filters are 

very sensitive to the incident angle of light and thus provides less attenuation to off-axis 

light.  In some instances, the size of the notch filter is one of the determining factors of 

the throughput of an instrument. 

Specular reflection, light that is elastically scattered without penetrating the tissue, is also 

undesirable.  Strategies such as oblique incidence,26 90 degree collection geometry,3 and 

a hole in the collection mirror have been realized to reduce its effect.27 

4.4 Light transport 

After filtering out most of the elastically scattered light, the Raman scattered light must 

be transported to the spectrograph with minimum loss.  To match the rectangular shape of 

the entrance slit of a spectrograph, the originally round-shape of the collected light can be 



relayed by an optical fiber bundle with the receiving end arranged into a round shape and 

the exiting end arranged linearly.22 

4.5 Spectrograph and detector 

In dispersive spectrographs for Raman spectroscopy, transmission holographic gratings 

are often used for compactness and high dispersion.  Holographic gratings can be custom-

blazed for specific excitation wavelengths and provide acceptable efficiency.  In addition, 

liquid nitrogen cooled and more recently thermoelectric cooled CCD detectors offer high 

sensitivity and shot-noise limited detection in the near infrared wavelength range up to 

~1µm.  These detectors can be controlled using programs such as Labview to facilitate 

experimental studies. 

To increase light throughput in Raman systems, the CCD chip size can be increased 

vertically to match the spectrograph slit height. However, large format CCD detectors 

show pronounced slit image curvature that must be corrected in pre-processing (described 

below).   

As an example of these design considerations, Figure 5 shows a schematic of the high-

throughput Raman instrument currently used in our laboratory.  We opted for free space 

delivery of the excitation light through a small hole in an off-axis half-paraboloidal 

mirror.  Backscattered Raman light is collimated by the mirror and passed through a 2.5” 

holographic notch filter to reduce elastically scattered light.  The Raman photons are 

focused onto a shape-transforming fiber bundle with the exit end serving as the entrance 

slit of an f/1.4 spectrometer.  The pre-filtering stage of the spectrometer was removed to 

reduce fluorescence and losses from multiple optic elements.  The back-thinned, deep 

depletion, liquid nitrogen-cooled CCD is 1300x1340 pixels, height-matched to the fiber 



bundle slit.  This instrument was specifically designed for high sensitivity measurements 

in turbid media. 

 

Figure 5 Schematic of a free space Raman instrument for noninvasive glucose 
measurements used at the MIT Spectroscopy Laboratory. 
 
5. Data Pre-Processing 

After data collection, various pre-processing steps are undertaken to improve data 

quality.  The pre-processing steps chosen can lead to different calibration results;  

therefore it is important for researchers to thoroughly document the exact steps taken. 

Frequently employed procedures are described in the following. 

5.1 Image curvature correction 

Increase of usable detector area is an effective way to improve light throughput in Raman 

spectroscopy employing multi-channel dispersive spectrographs.  However, owing to out-
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of-plane diffraction the entrance slit image appears curved.28  Direct vertical binning of 

detector pixels without correcting the curvature results in degraded spectral resolution.   

Various hardware approaches, such as employing curved slits26, 28 or convex spherical 

gratings, have been implemented.29  In the curved slit approaches, fiber bundles have 

been employed as shape transformers to increase Raman light collection efficiency.  At 

the entrance end the fibers are arranged in a round shape to accommodate the focal spot, 

and at the exit end in a curved line, with curvature opposite that introduced by the 

remaining optical system.  This exit arrangement serves as the entrance slit of the 

spectrograph, and provides immediate first order correction of the curved image, as 

described below.  However, for quantitative Raman spectroscopy, with substantial 

change of the image curvature across the wavelength range of interest (~150 nm) and 

narrow spectral features, this first order correction is not always satisfactory. 

As an alternative to the hardware approach, software can be employed to correct the 

curved image, with potentially better accuracy and flexibility for system modification.  In 

our past research, we have developed a software method involving using a highly Raman 

active reference material to provide a sharp image on the CCD.8  Using the curvature of 

the slit image at the center wavelength as a guide, we determine by how many pixels in 

the horizontal direction each off-center CCD row needs to be shifted in order to generate 

a linear vertical image.  This pixel shift method as well as the curved-fiber-bundle 

hardware approach, ignores the fact that the slit image curvature is wavelength dependent.  

The resulting spectral quality of the pixel shift method is thus equivalent to the curved-

fiber-bundle hardware approach.28  This issue becomes more important when large CCD 



chips and high-NA spectrographs are employed for increasing the throughput of the 

Raman scattered light.   

Recently, a software approach using multiple polystyrene absorption bands was 

developed for infrared spectroscopy.30  In this section we present a similar method that 

was developed concurrently, which calibrates on multiple Raman peaks to generate a 

curvature map.  This curvature mapping method shows significant improvement over 

first-order correction schemes.  

The curvature mapping method requires an initial calibration step.  In calibration, a full-

frame image is taken with a reference material that has prominent peaks across the 

spectral range of interest, for example, acetaminophen (Tylenol) powder.  We chose nine 

prominent peaks across the wavelength range of interest, as depicted by the arrows in 

Figure 6. 

The calibration algorithm generates a map 

of the amount of shift for each CCD pixel 

and a scale factor to maintain signal 

conservation in each CCD row.  Once the 

map and the scale factor are generated, 

usually when the system is first set up, the 

correction algorithm can be applied to 

future measurements. 

Significant improvement is observed from 

the pixel shift method to the curvature mapping method, especially toward either side of 

the CCD, as can be seen by comparing Figure 7(c) and Figure 7(e).  The overall linewidth 
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Figure 6 Raman spectrum of 
acetaminophen powder, used as the 
reference material in the calibration step. 
Nine prominent peaks used as separation 
boundaries are indicated by arrows. 



reduction in 14 prominent peaks is 7% (FWHM).  Such improvement is significant 

considering that the equivalent slit width is ~360 µm.  If a narrower slit is employed for 

better spectral resolution, the overall linewidth reduction will be more significant.  Note 

that the images were taken with 5-pixel CCD hardware vertical binning to reduce the 

amount of data, since the curvature is barely noticeable within such a short range.  The 

error introduced by the hardware binning is much less than 1 pixel, and thus negligible. 

5.2 Spectral range selection 

Multivariate calibration methods attempt to find spectral components based on variance.  

The presence of a spectral region with large non analyte-specific variations may bias the 

algorithm and cause smaller analyte-specific variance to be overlooked.  Therefore, the 

‘fingerprint’ region from approximately 300-1700 cm-1 is often chosen for analysis. 

5.3 Cosmic ray removal 

Cosmic rays hit the CCD array at random times with arbitrary intensity, resulting in 

spikes at individual pixels.  When the array is summed and processed, sharp spectral 
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Figure 7 CCD image of 
acetaminophen powder. 
Images were created with 
5-pixel hardware binning. 
(a) Raw image; (b) after 
applying pixel shift 
method; (c) Zoom-in of the 
box in (b); (d) after 
applying curvature 
mapping method; (e) 
Zoom-in of the box in (d). 



features of arbitrary intensities may appear in the Raman spectra.  These artifacts are 

typically removed before multivariate calibration. 

One approach is based on the assumption that the spectrum does not change its intensity 

from frame to frame other than due to noise and cosmic rays.  Therefore, by comparing 

multiple neighboring frames, a statistical algorithm can be used to identify cosmic rays.  

Another solution compares adjacent pixels in the same spectrum and detects abrupt jumps 

in intensity from pixel to pixel.  Once a cosmic ray contaminated pixel is identified, its 

value can be replaced by the average of neighboring pixels. 

5.4 Background subtraction 

As mentioned in the biological considerations section, the background signal in Raman 

spectra is one of the limiting factors in determining the detection limit.  Background 

removal techniques only approximate the shape of the background and therefore 

improvement in further quantitative analysis is often limited.  However, for qualitative 

analysis, background-removed spectra provide better interpretation of the underlying 

constituents. 

5.5 Random noise rejection and suppression 

Photon shot-noise limited performance can be achieved using a liquid nitrogen cooled 

CCD camera.  When a detector is shot-noise-limited, the random noise can be estimated 

by the square root of the measured intensity.  The most effective way to increase the 

signal-to-noise ratio (SNR) under shot noise limited conditions is to increase the 

integration time of the CCD or the throughput of the instrument.  However, extending the 

integration beyond a certain timescale offers no extra benefit as other errors begin to 

dominate performance.10  Once the data are collected, signal processing is the only way 



to further enhance the SNR.  Pixel binning along the wavelength axis is one method of 

increasing the SNR and results indicate an optimal number exists for binned pixels.10  

However, the drawback to this method is degradation in spectral resolution.  More 

commonly employed are Savitzky-Golay smoothing algorithms, which retains the data 

length.  

5.6 White light correction and wavelength calibration 

When spectra collected from different instruments or on different days are to be 

compared, white light correction and wavelength calibration are required.  White light 

correction is performed by dividing the Raman spectra to a spectrum from a calibrated 

light source, for example a calibrated tungsten-halogen lamp measured under identical 

conditions.  Combinatorial spectral responses of the optical components, the diffraction 

grating, and the CCD camera can be effectively removed, and thus reveal more of the 

underlying Raman spectral features.  Wavelength calibration is performed to transform 

the pixel-based axis into a wavelength-based (or wavenumber-based) axis, allowing for 

comparison of Raman features across instruments and time.   

6. In vitro studies 

In the following sections, we review the application of Raman spectroscopy to glucose 

sensing in vitro.    In vitro studies have been performed using human aqueous humor, 

filtered and unfiltered human blood serum, and human whole blood, with promising 

results.  Results in measurement accuracy are reported in root mean squared error values, 

with RMSECV for cross-validated, and RMSEP for predicted values.  The reader is 

referred to the introductory chapter for discussion on these statistics. 



6.1 Aqueous humor 

Lambert et al. have explored the use of Raman spectroscopic measurements of glucose 

present in the aqueous humor of the eye.20, 21, 31  This is undoubtedly an excellent portal 

for optical measurements with potential advantages such as easy access and less complex 

fluid composition.  In spite of these advantages, a spectroscopic measurement in the eye 

carries the risk of injury if the probing light is too intense.  Therefore, dosimetry and a 

fool-proof light delivery method are important concerns for in vivo human studies. 

Recently they demonstrated in vitro predictive capability of Raman spectroscopic 

measurements using a PLS calibration model derived from an artificial model.21, 31  

Human aqueous humor (HAH) was used as the in vitro sample for prediction and 

artificial aqueous humor (AAH) was used to construct the calibration model.  In the AAH 

model, five analytes including glucose at physiological concentrations were designed to 

vary independently with little correlation between any two analytes.  The main advantage 

of using an AAH model is to break the glucose-lactate correlation present in HAH 

(correlation coefficient r ~0.4).  The sample was placed in a contact lens for measurement 

by a Raman instrument using 785-nm excitation and a microscope objective with 180° 

geometry for Raman signal collection.  Each spectrum was obtained with excitation 

power ~100 mW and integration time ~150 seconds. 

They obtained an RMSEP of approximately 1-1.5 mM with R2 ~0.99.  Glucose spectral 

features were clearly observed in the second PLS factor, further supporting the 

calibration accuracy.31  They pointed out future directions such as focusing on 

demonstrating safety and efficacy in humans and determining the relationship between 

blood glucose and aqueous humor glucose. 



6.2 Blood serum 

Unprocessed samples 

Our laboratory began investigating noninvasive blood analysis using Raman 

spectroscopy in the mid 1990’s.32-34  The first biological sample study was conducted on 

serum and whole blood samples from 69 patients over a seven-week period.23  No sample 

processing or selection criteria were employed, with the exception of locating a few 

samples with extreme glucose concentrations to represent the range of diabetes patients’ 

glucose levels.  An 830-nm diode laser was employed for excitation and a microscope 

objective for light collection.  The laser power at the sample was ~250 mW and the 

integration time for each spectrum was equivalent to 300 seconds.  The glucose 

measurement results in serum were quite encouraging, with PLS calibration providing an 

RMSECV of 1.5 mM.  However, the glucose measurement results in whole blood result 

were not satisfactory because of reduced signal from the high turbidity.  Glucose spectral 

features were identified in both the PLS weighting vector and the b vector, supporting 

that the calibration model was based on glucose. 

With ultrafiltration 

Qu et al.3 described the use of Raman spectroscopy for noninvasive glucose 

measurements in human serum samples after ultrafiltration, a process to remove 

macromolecules.  Ultrafiltration can effectively eliminate Raman signals from large 

protein molecules that dominate unfiltered serum samples, thus significantly improving 

the signal-to-noise ratio and therefore the detection limit.  Nevertheless, it is time 

consuming and requires extra sample preparation.   



The experimental setup employed 785-nm excitation with a 90° collection geometry.  

Each spectrum was obtained with excitation power ~300 mW and integration time 

equivalent to 2.5 minutes.  Because filtered serum is nearly transparent at 785 nm, 

excitation of Raman scattering is effectively along the entire laser path, creating a line-

source in the cuvette.  Thus the authors surmise that better collection efficiency could be 

obtained with optics designed specifically for this type of source, as opposed to the 

standard spherical lens they employed. 

Regardless of potential collection efficiency improvements, they obtained an RMSEP of 

0.38 mM.  However, the PLS calibration model was obtained using 30 samples with 12 

factors retained for the development of the regression vector.  Without reported evidence 

of glucose spectral features it is difficult to determine whether the data was overfit.  The 

model was applied to 24 samples that were not in the calibration set, giving some 

justification to the analysis.  

Rohleder et al.35 described measurement of glucose in both serum and filtered serum 

from 247 blood donors.  A commercial spectrometer was used to acquire the spectra with 

785-nm excitation and a double holographic grating covering a wavelength range of 785-

1082 nm.  Spectra were obtained with excitation power ~200 mW at the sample and 

integration time ~300 s.  PLS calibration models were generated based on 148 samples 

and employed to predict the concentrations of the remaining 99 samples.  They obtained 

an RMSEP of 0.95 (R2 ~0.97) and 0.34 (R2 ~0.996) mM in unfiltered and filtered serum 

samples, respectively.   

 



6.3 Whole blood 

The main difficulty for measurement in whole blood as compared to serum is the much 

higher absorption and scattering of whole blood attributed to the presence of hemoglobin 

and red blood cells , respectively.  The combinatorial effect is a ~4X decrease in collected 

analyte Raman signal.   

A subsequent whole blood study by Enejder et al.22 in our laboratory confirmed this 

hypothesis and they were able to demonstrate the feasibility of measuring multiple 

analytes in 31 whole blood samples with laser intensity and integration time similar to the 

previously mentioned serum study.23 A 4X increase in Raman signal collection was 

achieved by employing a paraboloidal mirror and a shape-transforming fiber bundle for 

better collection efficiency, as depicted in Figure 5.  PLS leave-one-out cross validation 

was performed and an RMSECV of 1.2 mM was obtained.  The number of PLS factors 

compared to the number of samples raises the concern of overfitting.  However, glucose 

spectral features were identified in the regression vector, providing more confidence that 

the model was based on glucose. 

 

7. In vivo studies 

7.1 Tissue modulation approach 

Chaiken et al. 24, 36, 37 proposed using Raman spectroscopy to measure glucose in vivo 

with a technique called “tissue modulation,” i.e., continuously press/unpress the 

measurement site with a mechanical apparatus.  The basic principle is that during the 

“press” phase, blood is expelled from the measuring site and thus the spectrum is 

considered as nearly devoid of blood.  During the “unpress” phase, the spectrum is 

considered to be a sum of both blood and other tissue constituents.   



In a recent report,24 the difference spectrum between pressed and unpressed phases was 

interpreted as the whole blood spectrum.  Each spectrum was obtained with excitation 

power ~31 mW and integration time ~100 seconds.  Apparent glucose signal and blood 

volume factor were extracted by summing over 686-375 cm-1 and 1800-1000 cm-1 in the 

difference spectrum, respectively.  Integrated normalized unit (INU) was then defined as 

the ratio of the apparent glucose signal to the blood volume factor.  They claimed that 

375-686 cm-1 contains the most glucose information and 1800-1000 cm-1 contains mostly 

fluorescence plus Raman signal from other tissue constituents, indicative of blood 

volume.   

18 spectroscopic samples paired with fingerstick reference measurements were collected 

from an individual over two days with a time-randomized protocol. A calibration model 

was built by fitting a line through the plot of INU versus reference glucose concentration.  

The model was then applied to 31 samples collected over the next 14 weeks (7 additional 

samples from the same individual and 24 from different individuals).  After rejecting 11 

outliers, they obtained a correlation coefficient (r) of 0.8 and a standard deviation of ~1.2 

mM. 

Their work presents an interesting idea to isolate the glucose-containing blood spectrum 

by tissue modulation.  The result suggests that the INU not only correlates to the 

reference glucose concentration, but also hemoglobin, which raises the concern of 

specificity.  This technique can potentially be useful if several issues can be addressed. 

First, summation over 686-375 cm-1 obviously includes contributions from interferents 

and it is not clear how much error that introduces.  In addition, hemoglobin is not the 

only substance that fluoresces and thus it is unclear why the calculated blood volume 



factor could be representative of actual blood volume.  Further, it is likely that most 

glucose Raman signal measured from skin originates from glucose molecules in the 

interstitial fluid.  It is therefore unclear if the results were indeed based on blood glucose 

as claimed by the authors. 

7.2 Direct approach 

In our laboratory, Enejder et al. conducted a transcutaneous study on 17 non-diabetic 

volunteers using a version of the instrument depicted in Figure 5.8  Spectra were collected 

from the forearm of human volunteers in conjunction with an oral glucose tolerance test 

protocol, involving the intake of a high-glucose containing fluid, after which the glucose 

levels are elevated to more than twice that found under fasting conditions.  Periodic 

reference glucose concentrations were obtained from fingerstick blood samples and 

subsequently analyzed by a Hemocue device.  The glucose concentrations for all 

volunteers ranged from 3.8 to 12.4 mM (~68-223 mg/dL). 

Raman spectra in the range 1545-355 cm-1 were selected for data analysis.  An average of 

27 (461/17) spectra were obtained for each individual with a 3-min integration time per 

spectrum.  Each spectrum was obtained with excitation power ~300 mW and integration 

time equivalent to 3 minutes.  Spectra from each volunteer were analyzed using PLS with 

leave-one-out cross validation, with 8 factors retained for development of the regression 

vector.  For one subject, a mean absolute error (MAE) of 7.8% (RMSECV ~ 0.7 mM) 

and an R2 of 0.83 was obtained.  When data from 9 volunteers were combined, the MAE 

was 12.8% with R2 ~0.7, while combining all 17 volunteers gave MAE ~16.9% 

(RMSECV ~ 1.5 mM).  The number of PLS factors compared to the number of spectra is 

in danger of overfitting in an individual calibration.  However, the grouping schemes 



involving 9 (244 spectra) and 17 (461 spectra) volunteers utilized 17 and 21 factors, 

respectively, which is more acceptable.  Another encouraging piece of evidence was that 

multiple glucose spectral features were identified in the regression vectors, indicating that 

the calibration was at least partially based on glucose. 

This study was an initial evaluation of the ability of Raman spectroscopy to measure 

glucose non-invasively with the focus on determining its capability in a range of subjects.  

The protocol did not include measurements on the volunteers over a number of days and 

thus independent data was not obtained.   Further, oral glucose tolerance test protocols 

are susceptible to correlation with the fluorescence background decay, which may 

enhance the apparent prediction results.  Therefore, more studies, preferably involving 

glucose clamping performed on different days, are required.  

 

8. Toward prospective application 

The results from the in vitro and in vivo studies reviewed in the previous sections are very 

encouraging.  They demonstrate the feasibility of building glucose-specific in vivo 

multivariate calibration models based on Raman spectroscopy.  To bring this technique to 

the next level, prospective application of a calibration algorithm on independent data with 

clinically acceptable detection results needs to be demonstrated.  From our perspective, 

this objective requires advances to be made in extracting glucose information without 

spurious correlations to other system components and correcting for variations in subject 

subject tissue morphology and color.  We have developed new tools to address these 

issues.  Specifically, a novel multivariate calibration technique with higher analyte 

specificity that is more robust against interferent co-variation or chance correlation was 



developed.  This technique, constrained regularization, is described in section 8.1.  Also, 

a new correction method to compensate for turbidity-induced sampling volume variations 

across sites and individuals was developed.  This method, intrinsic Raman spectroscopy, 

is introduced in section 8.2.  Additionally, other considerations for successful in vivo 

studies such as reference concentration accuracy, optimal collection site determination, 

etc., will be discussed in the context of future directions. 

8.1 Analyte-specific information extraction using hybrid calibration methods 

Multivariate calibration methods are in general not analyte-specific.  Calibration models 

are built based on correlations in the data, which may be owing to the analyte or to 

systematic or spurious effects.  One way to effectively boost the model specificity is 

through incorporation of additional analyte-specific information such as its pure spectrum.  

Hybrid methods merge additional spectral information with calibration data in an implicit 

calibration scheme.  In the following, we present two of these methods developed in our 

laboratory. 

8.1.1 Hybrid linear analysis (HLA) 

Hybrid linear analysis was developed by Berger et al.38  First, analyte spectral 

contributions are removed from the sample spectra by subtracting the pure spectrum 

according to reference concentration measurements.  The resulting spectra are then 

analyzed by principal component analysis with significant principal components 

extracted.  These principal components are subsequently used as basis spectra to perform 

an orthogonalization process on the pure analyte spectrum.  The orthogonalization results 

in a b vector that is essentially the portion of the pure analyte spectrum that is orthogonal 

to all interferent spectra, akin to the net analyte signal. 



HLA was implemented experimentally in vitro with a 3-analyte model composed of 

glucose, creatinine, and lactate.  Significant improvement over PLS was obtained owing 

to the incorporation of the pure glucose spectrum in the algorithm development.  

However, because HLA relies on the subtraction of the analyte spectrum from the 

calibration data, it is highly sensitive to the accuracy of the spectral shape and its 

intensity.  For complex turbid samples in which absorption and scattering are likely to 

alter the analyte spectral features in unknown ways, we find that the performance of HLA 

is impaired.  Motivated by advancing transcutaneous measurement of blood analytes in 

vivo, constrained regularization was developed as a more robust method against 

inaccuracies in the pure analyte spectra.    

8.1.2 Constrained regularization (CR) 

To understand constrained regularization, multivariate calibration can be viewed as an 

inverse problem.  Given the inverse mixture model for a single analyte: 

 bSc T= . (4) 

The goal is to invert Eq. (4) and obtain a solution for b.  Factor-based methods such as 

principal component regression (PCR) and partial least squares (PLS) summarize the 

calibration data, [S,c], using a few principal components or loading vectors.  Whereas 

constrain regularization (CR) seeks a balance between model approximation error and 

noise propagation error by minimizatiing the cost function, Ф:39 
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with a  the Euclidean norm (i.e., magnitude) of a, and b0 a spectral constraint that 

introduces prior information about b.  The first term of Ф is the model approximation 

error, and the second term is the norm of the difference between the solution and the 



constraint, which controls the smoothness of the solution and its deviation from the 

constraint.  If b0 is zero, the solution is the common regularized solution.  For Λ=0 the 

least squares solution is then obtained.  In the other limit, in which Λ goes to infinity, the 

solution is simply b=b0.  

A reasonable choice for b0 is the spectrum of the analyte of interest because that is the 

solution for b in the absence of noise and interferents.  Another choice is the net analyte 

signal40 calculated using all of the known pure analyte spectra.  Such flexibility in the 

selection of b0 is owing to the manner in which the constraint is incorporated into the 

calibration algorithm.  For CR, the spectral constraint is included in a nonlinear fashion 

through minimization of Ф, and is thus termed a “soft” constraint.  On the other hand, 

there is little flexibility for methods such as HLA, in which the spectral constraint is 

algebraically subtracted from each sample spectrum before performing PCA.  We term 

this type of constraint a “hard” constraint.   

In numerical simulations and experiments with tissue phantoms, we found that with CR 

the RMSEP is lower than methods without prior information, such as PLS, and is less 

affected by analyte co-variations.  We further demonstrated that CR is more robust than 

HLA when there are inaccuracies in the applied constraint, as often occurs in complex or 

turbid samples such as biological tissue.27 

An important lesson learned from the study is that there is a trade-off between 

maximizing prior information utilization and robustness concerning the accuracy of such 

information.  Multivariate calibration methods range from explicit methods with 

maximum use of prior information (e.g. OLS, least robust when accurate model is not 

obtainable), hybrid methods with an inflexible constraint (e.g. HLA), hybrid methods 



with a flexible constraint (e.g. CR), and implicit methods with no prior information (e.g. 

PLS, most robust, but is prone to be misled by spurious correlations).  We believe CR 

achieves the optimal balance between these ideals in practical situations. 

8.2 Sampling volume correction using intrinsic Raman spectroscopy 

Sample variability is a critical issue in prospective application.  For optical technologies, 

variations in tissue optical properties such as absorption and scattering coefficients can 

create distortions in measured spectra.  This section provides a brief overview of 

techniques to correct turbidity-induced spectral and intensity distortions in fluorescence 

and Raman spectroscopy, respectively.  In particular, photon migration theory is 

presented as an analytical tool to model diffuse reflectance, fluorescence and Raman 

scattering arising from turbid biological samples.  Monte Carlo simulation is introduced 

as an effective and statistically accurate tool to numerically model light propagation in 

turbid media.  Using the photon migration model and Monte Carlo simulations, 

preliminary results of intrinsic Raman spectroscopy are presented. 

8.2.1 Optical properties biological tissue 

Light propagation in turbid media such as biological tissue is governed by elastic 

scattering and absorption of the media.  Elastic scattering is a phenomenon in which the 

direction of the photon is changed but not its energy, usually owing to discontinuities in 

material properties (e.g. refractive index) in the media, and absorption is the conversion 

of light energy into another form of energy (usually thermal energy).  Most analytical and 

numerical models employ macroscopic optical properties, including the absorption 

coefficient, µa (cm-1), the scattering coefficient, µs (cm-1), the single scattering angle θ, 

and the elastic scattering anisotropy, g = <cosθ>, average cosine of the single scattering 



angle.  The absorption and scattering coefficients are the probability of a photon being 

absorbed or scattered per unit path length.  The sum of µa and µs is called the total 

attenuation coefficient, µt, with its inverse defined as the mean free depth.  The phase 

function is a probability density function of the scattering deflection angle, describing the 

probability of a scattering angle at which single scattering event occurs.  For example, the 

Heyney-Greestein phase function41 is often used to approximate tissue scattering.  In 

general, these optical properties are wavelength dependent. 

Optical properties of biological tissue are known to be affected by physiological 

conditions, tissue morphology, and laser irradiation.  Different levels of hematocrit (red 

blood cells) in whole blood cause different absorption (hemoglobin) and scattering (red 

cells) properties.  Similarly, different skin layer thickness, morphology, and melanin 

content cause optical turbidity to vary.  Such turbidity variations exist across different 

tissue sites or individuals, and are generally slowly-varying in time.  On the other hand, 

laser irradiation can cause shorter time scale temporal variations in turbidity, typically as 

a result of heating.42 

A limiting factor in noninvasive optical technology is variations in the optical properties 

of samples under investigation that result in spectral distortions43-47 and sampling volume 

(effective optical pathlength) variability.48-53  These variations will impact a noninvasive 

optical technique not only in interpretation of spectral features, but also in the 

construction and application of a multivariate calibration model if such variations are not 

accounted for.  As a result, correction methods need to be developed and applied before 

further quantitative analysis.  For Raman spectroscopy, relatively few correction methods 



appear in the literature, and most of them are not readily applicable to biological tissue.54-

58  

In fluorescence spectroscopy, however, diffuse reflectance correction of spectral 

distortions in biological media has been studied extensively. Analytical models based on 

photon migration theory 43, diffusion theory 45, 59, 60, as well as empirical models 61, have 

been reported to obtain “intrinsic fluorescence.”  In the following, we will review a 

particular correction method based on photon migration theory for fluorescence 

spectroscopy, and introduce its Raman counterpart. 

8.2.2 Corrections based on photon migration theory 

Light propagation in turbid media can be described by the radiative transfer equation.62  

However, the analytical solution to this integro-differential equation can be found only 

for very special conditions and approximations.  The most extensively studied 

approximation is diffusion theory, which is used to model photons that experience 

multiple scattering events.62  Another very useful approximation is photon migration 

theory, developed by Wu et al.43, 44  This method employs probabilistic concepts to 

describe the scattering of light and to set up a framework that allows the calculation of 

the diffuse reflectance from semi-infinite turbid media.  The total diffuse reflectance from 

a semi-infinite medium can be written as: 

 n

1n
nd a*(g)fR ∑

∞

=

≈ , (6) 

with fn(g) the photon escape probability distribution, n the number of scattering events 

before escaping, g the scattering anisotropy, and a the albedo (µs/(µs+ µa)).  Two 

fundamental assumptions are made: the photon escape probability distribution of a semi-

infinite medium only depends on the number of scattering events and anisotropy; the 



lineshape of the escape probability distribution can be approximated by exponential 

function, i.e., fn(g)= k(g)e-k(g)n.  These assumptions are validated by Monte Carlo 

modeling. 

In the same paper, Wu et al. derived an analytical equation relating measured 

fluorescence (F) to the intrinsic fluorescence (IF), defined as the fluorescence as 

measured from a optically-thin slice of tissue, through diffuse reflectance (R):43, 44 
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with IF the intrinsic fluorescence, a the albedo, and R the diffuse reflectance.  Subscripts 

x and m denote quantities at the excitation and emission wavelengths, respectively. 

This equation and its variants have been employed to recover turbidity-free fluorescence 

spectra from various types of tissue.  The correction facilitates interpretation of 

underlying fluorophores and consequently improves the accuracy of disease diagnosis.43, 

44, 47 

The same general principle that applies for intrinsic fluorescence should hold true for 

Raman spectroscopy as well.  Unlike in fluorescence spectroscopy, spectral distortion 

owing to prominent absorbers is less of an issue in the NIR wavelength range.  However, 

for quantitative analysis the turbidity-induced sampling volume variations become very 

significant and usually dominate over spectral distortions. 

An equation analog to Eq. (7) can be derived for the intrinsic Raman signal (IR) under 

semi-infinite conditions (sample extends into a half plane and all unabsorbed photons 

eventually exit the air/sample interface): 
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Because most Raman instruments rely on a notch filter to prevent CCD saturation from 

elastically scattered light, diffuse reflectance at the excitation wavelength is not directly 

available.  Monte Carlo simulations and experimental results show that the intrinsic 

Raman signal for arbitrary samples, as well as collection geometries, can be more 

conveniently described by: 
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Parameters in Eq. (9) can be experimentally calibrated and employed to obtain the 

intrinsic Raman signal. 

8.2.3 Monte Carlo method 

Monte Carlo simulation is a statistical tool based on macroscopic optical properties that 

are assumed to extend uniformly over small units of tissue volume (i.e., a voxel).  A pre-

defined grid is employed to simulate photon-tissue interaction sites.  The mean free path 

of the photon-tissue interaction sites typically ranges from 10-1000 µm.  This method 

does not consider the details of energy distribution within voxels.  Photons are treated as 

classical particles, and the wave features are neglected.62, 63  Since its early introduction 

as a tool to simulate photon elastic scattering, capabilities such as polarization,64, 65 

temporal resolution,66 fluorescence,67 and Raman scattering10 have been developed.  

Details of the Monte Carlo simulation for diffuse reflectance (the core program) are well 

documented in the literature.63   



8.2.4 Intrinsic Raman spectroscopy (IRS) 

To test Eq. (8), the product (Ram*µt) is plotted versus the ratio (Rx-Rm)/(ax-am) in Figure 

8 using results from Monte Carlo simulations.  The intrinsic Raman signal can be 

obtained from the slope of the linear fit.  Note that Eq. (8) is only legitimate when the 

semi-infinite condition holds, but expression Eq.(9) should be valid for any sample 

geometry.  To test Eq. (9), the product (Ram*µt) is plotted versus Rm in Figure 9 using 

results from Monte Carlo simulations.  The fit to this curve is the intrinsic Raman signal 

and can be used to correct for sampling volume variations.  It can be seen that this 

expression fits less well in the presence of high absorption (lower Raman and reflectance).  

However, such high absorption cases in general are rare in biological tissue in the NIR 

spectral region.   
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Figure 8 (Ram*µt) versus (Rx-Rm)/(ax-am).  
The slope is the intrinsic Raman signal. 

Figure 9 (Ram*µt) versus Rm.  The fit to 
the curve can be used to correct for 
sampling volume variation. 

To apply IRS, one needs to know µt of the samples.  Extraction of optical properties has 

been studied by many researchers.68-72  The majority of methods are based on diffusion 

theory or variants of it.  Our laboratory extracts optical properties from biological tissue 



routinely in other wavelength ranges and a similar method could be employed for this 

purpose.72 

8.3  Other considerations and future directions 

The results presented above are promising.  However, for non-invasive Raman 

spectroscopy to be applied prospectively with clinically acceptable accuracy, several 

additional modifications/improvements/advances/ need to be implemented.  We address 

these below.  

Accurate reference concentration measurements 

An additional factor that greatly affects the performance of the calibration algorithm is 

the accuracy of the reference measurements.  In spectroscopic techniques such as Raman, 

a large portion of the collected glucose signal likely originates from the glucose 

molecules in the interstitial fluid (ISF).  In addition, it is well known that the interstitial 

glucose lags the plasma glucose concentration from 5 to 30 minutes in humans.73  As a 

result, using plasma glucose as the reference concentration may introduce errors.  

Methods of extracting interstitial fluid for glucose reference measurements should be 

explored. 

Background signal and its variations over time 

As mentioned earlier, the intense background, typically described as fluorescence, can 

limit the detection accuracy in three aspects: the noise associated with the background 

decreases the SNR; the changes in its spectral shape over time confounds the calibration 

algorithm; and its intensity variations over time introduces non analyte-specific 

correlation into the calibration model.  Unfortunately, the background-associated noise 



can not be removed by background removal techniques.  Further, it has been found that 

removing the background using polynomial fitting does not improve calibration results, 

potentially owing to non-analyte-specific artifacts.8  Thus, methods to reduce the 

background signal at its origin should be explored.  One approach may be using pre-

photobleaching combined with intentional motion by, for example, scanning the 

illumination spot around an area slightly larger than the spot itself.  With such a scheme, 

the apparent background can be lower to start with, and the photobleaching can be 

reduced.   

Optimal probing depth through accurate sample positioning 

The probing depth and sample positioning are critical for optimal collection of glucose-

specific Raman scattered photons and calibration transfer.  In experiments, the optimal 

probing depth can be estimated from extracted optical properties, and therefore the 

correct distance between the sample-and the collection optic can be determined for each 

measurement site. To address this, a fundamental study of morphological and layer 

structures at the probing site should be carried out with a computer-controlled 3-axis 

precision stage, as has been done on particular parts of skin.9  Because most Raman 

scatterers have specific spatial distribution in skin, such as keratin in the epidermis, 

collagen in the dermis, etc., a two-layer model can be developed and utilized.  Given such 

distinctive spatial distributions between keratin and collagen, we can obtain information 

about the probing depth and even layer thickness by comparing the relative magnitude of 

keratin and collagen Raman signals.  By knowing the exact sampling volume and its 

coverage of various skin morphological structures, we can estimate how much of the 



glucose-containing region (dermis in the two-layer model) is sampled.  This information 

can effectively lead to better reference concentrations, improving the calibration accuracy.  

Motion artifacts and skin heterogeneity  

A key component to obtaining accurate and robust calibrations is the sample interface.  

The sample interface should ideally limit motion while maintaining a constant pressure 

and temperature.   One approach to combat inadvertent motion artifacts is to intentionally 

build motion into the calibration model.  This can be achieved by scanning the laser spot 

within a larger area. 

Optimal data collection site 

Individual calibration models based on cross validation can be established for several 

candidate sites such as forearm, fingernail, etc, and the results can be compared.  The 

minimum detection error analysis can also be employed to evaluate different sites. 

 
9. Conclusion  

Quantitative Raman spectroscopy is a promising technique for noninvasive glucose 

sensing.  From its early development with in vitro studies by several groups, in vivo 

studies have been realized with the aid of more advanced instrumentation and calibration 

algorithms.  The in vivo studies performed to date have demonstrated the feasibility of 

obtaining glucose-specific multivariate calibration models.  For Raman spectroscopy to 

be a viable clinical technique, successful prospective studies must be carried out.  From 

our perspective, breakthroughs have to be made in the following directions: enhancing 

glucose specificity, correcting for diversity across individuals, accurate reference 



concentration measurements, reducing the fluorescence background, sample positioning 

and interface, and optimal site determination.   

In this chapter we presented our research efforts addressing the first two issues with 

constrained regularization and intrinsic Raman spectroscopy, respectively.  These 

techniques will play a critical role in prospective studies involving multiple 

sites/subjects/days.  We are currently planning for a multiple-subject and multiple-day in 

vivo study, first on dogs and then on humans.  We believe these new developments 

together with a robust sample interface will enable us to demonstrate prospective 

applicability. 
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